
Math 110 Final Project

Hunter Bigge

May 2019

Contents

1 Introduction 1

2 Markov Process 1

3 Random Walk 2

4 Physics 3

5 Data Science 7

6 Conclusion 9

7 References 9

1 Introduction

Random Walk is a mathematical object used to describe how a random set of
steps behaves on a mathematical space. Many historians trace this study of
stochastic processes back to Soviet mathematician Andrey Kolmogorov. Who
published Foundations of the Theory of Probability in 1933, laying the modern
axioms for studying the uncertain. Before Kolmogorov, probability had a bad
name in Math and was seen as the “Theory of misfortune” because it lacked
a solid foundation. Today, because of the work of Kolmogorov, Blasé Pascal,
Pierre Laplace, and many others, the study of probability is used in a very wide
range of disciplines, from Physics to Economics. In this paper, I will discuss
the various applications of a Random Walk after giving it some background;
moving from general Markov Processes to a specific Random Walk case.

2 Markov Process

A Markov chain is a stochastic model describing a sequence of possible events
in which the probability of each event depends only on the state attained in

1

Hunter Bigge

the previous event. Markov processes are the stochastic analogs to a the most
useful deterministic processes- di↵erential equations and recurrence relations.
To define the language I will use to discuss Markov Processes, consider the
series X.

X = (X0, X1, X2, ..., Xn, Xn+1, ...) (1)

This series is comprised of states X and times n. If we take the general
sequence of discrete states n 2 N , then the only thing that that state Xn+1

depends on is state Xn. This discrete case is known as a Markov Chain, and it
is relatively simple, but still proves useful and has many interesting implications.
We can also discuss a Markov process that takes place in a continuous space
n 2 [0,1). We can formally define a Markov Process if it fulfills the following
relation

P (Xt+1 2 A | Xt) = P (Xs+t 2 A | X0, ..., Xt) (2)

Meaning the probability of a being in a state given the previous state is the
same as the probability of being in that state given all information regarding
all previous states. A random walk is a simple example of a Markov Chain.

3 Random Walk

Now that we have an idea of what a Markov process is, we can look deeper into
the idea of random walk. The 1D random walk is probably the simplest example
of a random walk and helps us understand some of the important principles of
studying randomness. A game of blackjack is a great example of a real life 1D
random walk. You have a probability of winning

P (win) = a, a 2 [0, 1] (3)

And a probability of losing

P (lose) = b = 1� a, a, b 2 [0, 1] (4)

If you play N times, then your chance of winning m of them is given by a
binomial distribution

BN (m) = a
m
b
N�m

✓
N

m

◆
(5)

Now that we have created a distribution for this random process, we can
start to extract information about the distribution. For example, we can study
what your winnings will be after N games. This is mainly influenced by the
number of games you win, or the expected value of m.

hmi =
NX

m=0

ma
m
b
N�m

✓
N

m

◆
(6)

2

Using the fact that a probability distribution always integrates to 1, we can
di↵erentiate with respect to a, then multiply by a to find a closed form solution
to the expected value of m. This is easier if we temporarily forget about the
relation between a and b.

NX

m=0

ma
m
b
N�m

✓
N

m

◆
= a@a[

NX

m=0

a
m
b
N�m

✓
N

m

◆
] = a@a(a+ b)N = N(a+ b)N�1

(7)
Now this sum is trivial for any a and b, however we only care about when

b = 1� a. This yields an expected value of

hmi = Na (8)

Similarly we can calculate standard deviation through a similar expected
value calculation

� =
p

hm2i � hmi2 =
p
Nab (9)

When a = b, we call this situation an unbiased 1D random walk. After
extracting useful information like mean and standard deviation, we note that
the binomial distribution becomes a Gaussian as N approaches infinity

lim
N!1

BN (m) ! 1

2⇡Nab
exp[� (m�Na)2

2Nab
] (10)

This is a result of the central limit theorem, which states when any proba-
bility distribution is sampled N times, the average of the samples approaches a
Gaussian as N approaches infinity, with the width scaling like � ⇠ 1p

N
. Thus,

because we know mean and standard deviation we can describe the normal dis-
tribution very precisely. The large N approximation becomes very helpful for
studying random walks in Physics because we typically deal with number of
molecules on the scale of 1024.

4 Physics

The principles of random walk are very useful in studying di↵usion in Physics.
Di↵usion refers to the net spreading of the distribution of molecules due to
random molecular motion. Consider a hydrogen molecule being ejected from
a gun. The molecule moves until it strikes another molecule, then bounces in
a random direction until it hits another molecule. It is useful to compute the
probability distribution Pt(x) of the location of a hydrogen molecule after time
t. It can be useful to define some physical quantities before going into the
mathematics behind di↵usion.

• Collision time, ⌧ - this is the average time a molecule undergoes before
colliding with another molecule

3

• Mean free path, l - average distance a molecule covers between collisions

• Average molecular velocity, v̄

• Number density, n - number of molecules per unit volume

• Mass density, ⇢ - average mass of molecule times the number density

Now let us consider the probability distribution of a hydrogen molecule after
time t. We can start by treating this as an unbiased 1D random walk. Since
this process is unbiased, the expected value does not tell us much, so we will
examine the root mean squared displacement. The RMS displacement is given
by

xrms =
p
Nl =

p
lv̄t (11)

Knowing the mean is zero and xrms = � =
p
lv̄t, we can immediately write

down the probability distribution as a Gaussian (t << ⌧)

Pt(x) =
p

1/(2⇡lv̄t)e�x2/(2tlv̄) (12)

Note that this distribution satisfies the following di↵erential equation

@Pt(x)

@t
= D

@
2
Pt(x)

@x2
(13)

This is known as the 1D Di↵usion Equation, with D = 1
2 lv̄. We also notice

that, because there are so many particles (about 1024) we can think of the
number density as the time average of the probability distribution, n(x, t) =
NPt(x). This leads us to the following di↵erential equation, if we have rotational
symmetry in 3D

@n(~x, t)

@t
= D~r2

n(~x, t) (14)

D is referred to as the di↵usion constant and given by the Einstein-Smoluchowski
equation D = 1

2
l2

⌧ . Although the di↵usion equation looks simple, it has very
many important implications and is actually mathematically identical to the
Schrödinger Equation. Furthermore, if we remove the spatial dependence from
D, then we get a more specific version of the Di↵usion Equation, called the heat
equation. The di↵usion equation is linear so if n1(~x, t) and n2(~x, t) are solutions
then n1(~x, t)+n2(~x, t) will also be a solution. This makes the di↵usion equation
much easier to solve. We can start with a single point which is described by
Pt(x). Then we can observe that as t ! 0, Pt(x) approaches a delta function
�
3(~x), by definition. Then since any function can be described as a set of points,
we can use Green’s function method to come up with a general solution at all
time if we know the number density at time t = 0, n0(~x, 0), by simply summing
over all starting points

n(~x, t) =

Z
d
3
y

r
1

2⇡lv̄t
exp[

�x
2

2tlv̄
]n0(~x, 0) (15)

4

The physical interpretation of this solution is that the number of molecules
at point ~x are the molecules that walked from ~y after time t. This ability to
approximate microscopic randomness allows us to see patterns in macroscopic
phenomena, like Brownian Motion. Which refers to random walk of large ob-
jects due to microscopic phenomena. Robert Brown first put forth the idea
of Brownian Motion by observing random motion of pollen in a glass of water
due to random movement of the water molecules. Brownian motion has many
interesting applications in physics and Albert Einstein used it, combined with
the di↵usion equation, to measure Avogadro’s number in 1905.

Now that we have a good physical understanding of how particles di↵use
we can take a more mathematical approach the analysis. The heat equation
is a nice di↵erential equation to use because we can use principles from Math
110, specifically Fourier analysis, and random walk theory to come up with a
solution that is extremely applicable from a physical standpoint. We will solve
the heat equation in a discrete setting.

Let A be a finite subset of the integers Z with boundary @A. The tem-
perature at time n at location x 2 A is given by pn(x). We can think of this
temperature as being determined by the density of ”heat particles” from the
2d neighbors of x. These particles perform random walks on A until they leave
A, and are no longer considered. Thus, we can give the temperature at x by
summing over the heat flow from the neighbors of x:

pn+1(x) =
1

2d

X

|y�x|=1

pn(y) (16)

Then we can define @npn(x) = pn+1(x) = pn(x) yielding our heat equation:

@npn(x) = Lpn(x) (17)

Where L is defined to be the discrete Laplacian.

Lf(x) =
1

2d

X

y2Z,|y�x|=1

[f(y)� f(x)] (18)

Also, helpful to define Q

Qf(x) =
1

2d

X

y2Z,|y�x|=1

f(y) (19)

We now want to come up with some boundary conditions and initial condi-
tions such as

Initial:
p0(x) = f(x), x 2 A (20)

Boundary:
pn(x) = 0, x 2 @A (21)

With these initial conditions we can imagine a unique solution that satisfies
the initial conditions and simply follows the di↵erential equation. We can set

5

pn(x) = 0 if x 2 @A, p0(x) = f(x) if x 2 A, and find pn(x) if x 2 A recursively.
Now we simply must find the function! Let’s start by finding pn for A =
(1, ..., N � 1). This becomes a linear algebra problem and we must, essentially,
diagonalize the matrix Q. Let’s start by finding functions that satisfy

pn(x) = ��(x) (22)

Use Equation (9) to see that if pn(x) is of this form then

@npn(x) = �
n+1

�(x)� �
n
�(x) = (�� 1)�n

�(x) (23)

We can then try to find the eigenfunctions and eigenvalues of Q to find �

and �(x) such that

Q�(x) = ��(x) (24)

This is where Fourier analysis comes in. We can make this a lot easier for
ourselves if we guess good eigenfunctions of Q.

Noticing that sin((x± 1)✓) = sin(✓x)cos(✓)± cos(✓x)sin(✓), we can find an
eigenfunction of Q

Qsin(✓x) = �✓sin(✓x),�✓ = cos(✓) (25)

Now we simply choose a ✓j that satisfies the boundary conditions. If ✓j =
⇡j/N , then �j(x) = sin(⇡jx/N). Which satisfies �j(0) = �j(N) = 0. Note that
these are eigenfunctions with di↵erent eigenvalues for the symmetric matrix Q,
so they must be orthogonal and linearly independent. Now, every function f(x)
on A can be written uniquely as the sum of these eigenfunctions as follows

f(x) =
N�1X

j=1

cjsin(
⇡jx

N
) (26)

This sum is called a finite Fourier series and allows us to find the solution to
the heat equation with f(x) as the initial condition. If we sum over both sides
of Equation (15) and plug in our values of �, ✓, and �(x), then we get a general
solution to the heat equation

pn(y) =
N�1X

j=1

cj [cos(
⇡j

N
)]n�j(y) (27)

In summary we can say that the solution to the heat equation

@npn(x) = @
2
xpn(x) (28)

Is given by

pn(y) =
N�1X

j=1

cj [cos(
⇡j

N
)]n�j(y) (29)

6

With cj that satisfy

f(x) =
N�1X

j=1

cj�j(x) (30)

5 Data Science

Another application of Random Walk and Markov processes is in machine learn-
ing. The specific example that I’d like to dive into is Reinforcement Learning
which leverages the Markov Decision Process. At a high level, the process of
reinforcement learning consists of an agent observing its environment, which
consists of surrounding states and rewards. This process is known as Rein-
forcement learning (RL), which is an area of machine learning concerned with
how software agents ought to take actions in an environment so as to maximize
some notion of cumulative reward. Reinforcement learning is considered as one
of three machine learning paradigms, alongside supervised learning and unsu-
pervised learning. We can formally define an RL problem as a Markov Decision
Process. We have already defined the Markov property, but what is a Markov
Decision Process? First, in RL we like to define a probability that the agent
moves on to the next state

Pss0 = P [St+1 = s
0|St = s] (31)

This would be the probability that the agent moves from state s to s
0. Given

this probability we can say that the Markov process is a tuple, containing state
and probability (S, P). However, we are concerned with a Markov Reward
Process (MRP), which contains a value judgment about how much reward a
given path yields. This MRP is also a tuple, but includes a few more criteria
(S, P,R,�). We can define these criteria as follows.

1. S - state space

2. P - transition probability

3. R - reward function

4. � 2 [0, 1] - Discount Factor

Our goal is to maximize the expected reward over the course of our agents
journey from state to state. We can quantify this return with the following
function.

Gt = Rt+1 + �Rt+2 + �
2
Rt+2 + ... =

1X

k=0

�
k
Rt+k+1 (32)

The � appropriately discounts rewards further away because they should
matter less. The higher the value of � the more far-sighted the agent is (i.e.
it cares more about distant rewards). The discount factor is mathematically

7

helpful as it ensures that our process will converge and we avoid an infinitely
looping MDP, which would not find a maximum G. it is also good to discount
rewards because of uncertainty regarding the future. Often times, the agent will
not be 100 percent certain of its path. Now that we understand the discount
factor, we can focus on how an MDP maximizes return. An agent can calculate
the value of a state by taking the expected value of its return function G.

v(s) = E[Gt|St = s] (33)

By taking the expected value of the return function G at each state, we can
develop a set of values for each state to inform the agent of how to move. But
what exactly does this look like? We use the Bellman Equation. Starting from
our v(s) function we can expand Gt

v(s) = E[Rt+1 + �(Rt+1 + �Rt+2 + ...)|St = s] (34)

Then we can sub in Gt+1 and note that expectation value function is linear,
and we arrive at the Bellman Equation

v(s) = E[Rt+1 + �v(St+1)|St = s] (35)

Bellman Equation is linear and can be solved directly, but takes a great deal
of computing power, on the order of O(n3) for n states. Now that we have an
idea of how MRP works, we can examine a Markov Decision Process, which can
be defined by a tuple containing (S,A, P,R,�). Where A is the action space
that an agent can take. Imagine a mouse in a grid that only goes up, down,
left, or right. It’s action space is (up, down, left, right). Now we have a state
transition probability function of

P
a
ss0 = P [St+1 = s

0|St = s,At = a] (36)

Reward function is

R
a
s = E[Rt+1|St = s,At = a] (37)

The goal of an MDP is to find the policy ⇡ that maximizes an agents expected
return in a given environment.

⇡(a|s) = P [At = a|St = s] (38)

These policies are not dependent on the current state, meaning when an
agent arrives at a state, its action is already decided. In order to determine the
best policy we need to iteratively figure our which ⇡ maximizes our expected
return. We can do this by defining the reward function of a given state combined
with a policy.

R
⇡
s =

X

a2A

⇡(a|s)Ra
s (39)

8

Now that we have developed a method for valuing actions from given states
with a given policy, we need to figure out the best policy to tell us how to behave
in a Markov Process. We need to first find out how good it is to be in a given
state if I’m following a policy ⇡. This is given by

v⇡(s) = E⇡[
1X

k=0

�
k
Rt+k+1|St = s], s 2 S (40)

From this function, we can figure out the best action a to take, given a policy
⇡.

All of this is to show the considerations that a computer will make when
navigating a Reinforcement Learning Environment. The computer iteratively
operates in a Markov process to maximize expected return for the agent. Next
steps would include the process of using gradient descent and other optimization
techniques to develop the best policy. An example of this in real life would be
a rational mouse (agent) in a maze (environment), operating under a similar
technique to find a policy (⇡) that gets it out of the maze the fastest while
collecting the most cheese (rewards).

6 Conclusion

In this paper I defined a Markov Process and showed how Random Walk was
a very useful extension of it in Physics. Physical phenomena like di↵usion,
Brownian motion, and Schrodinger’s equation all can follow from Random Walk
at a microscopic level. I then took the di↵usion constant to not be spatially
dependent, yielding the heat equation. I then solved the heat equation using
principles of Random Walk and Fourier analysis. Then I moved on to talk about
Reinforcement learning and how a Markov Decision Process is built up from a
simple Markov Chain. This is one of the 3 most important forms of machine
learning and relies heavily on simple principles discussed in this paper. Overall,
I found it enjoyable to discuss uncertainty and randomness in physical systems
because uncertainty typically has a negative connotation, so its interesting to see
how much information we can siphon from such little information. I also enjoyed
being able to apply things we learned in the course to real world problems that
present themselves in my other classes and research.

7 References

1. http://www.math.uchicago.edu/ lawler/reu.pdf

2. Matthew Schwartz Statistical Mechanics Spring 2019 Lecture 2

3. http://www.randomservices.org/random/markov/Recurrence.html

4. https://www.cs.cmu.edu/ avrim/ML14/lect0326.pdf

9

5. https://towardsdatascience.com/reinforcement-learning-demystified-markov-
decision-processes-part-1-bf00dda41690

10

